UW-E830-V-V1.0 Face Panel Motherboard Technical Specification

Document Revision History

	Remarks	Date
1	Created	2025-02

1

Product Overview

UW-E830-V-V1.0 is a face panel motherboard developed based on the EEASYTECH SV830C main chip. This motherboard is equipped with built-in 512Mb 16-bit DDR2, onboard 8GB EMMC or optional1Gb SPI NAND(default 1Gb SPI NAND). It supports MIPI display and dual MIPI camera functionalities.

The SV830C is a professional AI SoC with a neural network acceleration engine, designed for applications such as video security, residential access control, gate barriers, building intercoms, and smart cabinets. Its integrated neural network processor supports up to 0.5 TOPS of deep neural network computing power. Typical applications include live detection for face recognition, gesture detection, and people counting. The SV830C integrates a 32-bit RISC processor with FPU, providing rich general-purpose computing capabilities for customized development. It also features H.264 video codec for real-time encoding and decoding, ensuring high-resolution, high-frame-rate, and high-quality imaging. The high-performance ISP supports 3D noise reduction, delivering excellent performance in low-light conditions. Additionally, it can simultaneously process two digital camera interfaces. The display processing unit supports hardware mouse layers, graphic layers, and video layer overlays, accelerating GUI and video synthesis.

Key Features:

- 32-bit RISC CPU with FPU@1.0G, NPU@0.5 TOPS
- Supports MIPI display with resolutions up to 1920×1200@60Hz
- Dual 1/2MP cameras with high-performance ISP and 3D noise reduction
- Supports 2.4G WIFI/BT and Ethernet
- 3 TTL UART ports (1 configurable as RS485), relay, Wiegand IN/OUT, fill light, GPIO, and other expansion interfaces

2 Specifications

Hardware specifications:

CPU	32-bit RISC CPU with FPU, 1.0 GHz		
NPU	Built-in CNN accelerator NPU, 0.5TOPS		
Memory	Built-in DDR2 512Mb 16-bit		
Internal Storage	Optional SPI NAND or EMMC 8GB/16G/32G(default 1Gb SPI NAND)		
Display Interfaces	MIPI interface, supports max resolution 1920 $ imes$ 1200@60Hz		
Network	100M Ethernet interface		
Network	2.4G USB WIFI module, supports Wi-Fi 802.11b/g/n		
Real-Time Clock	Built-in RTC battery		
	Supports dual MIPI cameras		
	1 USB port (USB OTG function)		
Interface device	3 TTL ports (1 can be configured as RS485), 1 Wiegand IN/OUT flexible configuration, relay, GPIO, and other rich peripheral, interfaces for connecting locks, card readers, scanners, ID modules, etc.		
	Built-in amplifier, supports 2W 8Ω speaker		

Audio Input	Supports MIC, 1 microphone interface	
Touchscreen	Supports capacitive touchscreen	
Fill Light	Supports white light and infrared fill light	

Software Specifications:

OS	Linux system
Face Algorithm	Dynamic face detection and tracking based on video stream,1:N recognition algorithm;Dynamic dual camera anti-counterfeiting, completely solving the deception of photos and videos on various carriers; Supports 20K face database, 100K recognition records At 20K-face database, 0.01% false acceptance rate, 97% pass rate.
Application Software	Supports saving on-site images during face recognition or stranger detection; Management system backend deployed via public cloud; Supports local face registration, database import, network settings, liveness detection switch, and other basic functions.
API Interface	Framework provides C/C++ API; Supports online API(HTTPS);

3_{main} interfaces

3.1 Interface diagram

- 3.2 Main Interfaces Introduction
 - SPK(Triangle marks Pin 1, 2PIN/1.25mm) Speaker Interface

S/N	Definition	Attribute	Description
1	OUTN	Output	Audio - signal (connect to speaker -)
2	OUTP	Output	Audio + signal (connect to speaker +)

- 1. Connect the speaker before powering on. Do not hot-plug the speaker.
- 2. Default output power: $8\Omega/2W$. Ensure the speaker's rated power matches.
 - ♦ MIC(Triangle marks Pin 1, 2PIN/1.25) MIC Microphone Interface

S/N	Definition	Attribute	Description	
1	MIC-	Audio Input	Audio input negative	
2	MIC+	Audio Input	Audio input positive	

Notes:

- 1. Ensure the microphone's polarity matches the mainboard's.
- 2. Recommended MIC sensitivity: -37dB.

RTC BAT(Triangle marks Pin 1, 2PIN/1.25mm) RTC Battery Interface

S/N	Definition	Attribute	Description
1	3V Battery -	Power	3V battery negative
2	3V Battery +	Power	3V battery positive

Notes:

1. Ensure correct polarity when connecting the RTC battery. Reverse connection may cause short circuits, posing fire or explosion risks.

2. If RTC time is inaccurate, replace the battery with a 3V CR2032 button cell with leads. Contact FAE for specifications.

WHITE LIGHT IO(Triangle marks Pin 1, 2PIN/1.25mm) White Light Fill
Light IO Control

S/N	Definition	Attribute	Description
1	LED-GPIO	Signal Output	High level turns on white LED (default: unconnected, reserved)
2	GND	Ground	Ground

1. Ensure the signal and ground connections match the mainboard's pinout.

S/N	Definition	Attribute	Description
1	12V	Power	12V controllable output for white fill light
2	GND	Ground	GND

Fill Light Power (Triangle marks Pin 1, 2PIN/1.25mm)

Notes:

1. Ensure the power and ground connections match the mainboard's pinout. Incorrect connections may damage the mainboard or light panel.

•	UART0(Triangle marks Pin 1,	3PIN/2.0mm)	DEBUG Serial Port
---	-----------------------------	-------------	--------------------------

S/N	Definition	Attribute	Description
1	GND	Ground	GND
2	TX0	Signal Output	Default DEBUG serial port $TX0\ (\ Configurable\ TTL)$
3	RX0	Signal Input	Default DEBUG serial port $RX0$ (Configurable TTL)
4	5V	Power	5V power supply

Notes:

- 1. This port is typically used for engineering debugging only.
- 2. The port uses TTL 3.3V level. Do not connect RS232 or 5V serial debug tools.

♦ UART4(Triangle marks Pin 1, 4PIN/1.25mm) TTLSerial Port, reuse UART

4 with the tail line interface(Configurable as RS485)

S/N	Definition	Attribute	Description
1	GND	Ground	Ground
2	TX4	Signal Output	TTL serial port (configurable as 485)
3	RX4	Signal Input	TTL serial port (configurable as 485)
4	5V	Power	5V power supply

UART2(Triangle marks Pin 1, 4PIN/1.25mm) TTL Serial Port

S/N	Definition	Attribute	Description
1	GND	Ground	Ground
2	TX2	Signal Output	TTL serial port
3	RX2	Signal Input	TTL serial port
4	5V	Power	5V power supply

TTL&RS485 Serial Port Usage Notes:

- 1. Ensure the serial port level matches (3.3V TTL).
- 2. When configured as RS485, connect only RS485 devices (not TTL or RS232).
- 3. Do not reverse TX/RX connections. For RS485, TX corresponds to RS485 A, RX to RS485 B.
- 4. Serial port access nodes must match (e.g., serial port 1 corresponds to TTYS1).
- CTP(Triangle marks Pin 1, 6PIN/0.5mm) CTP Capacitive Touchscreen Interface

S/N	Definition	Attribute	Description
1	SDA	I/O	I2C data
2	SCK	Output	Clock signal
3	REST	Output	Reset
4	INT	Input	Interrupt
5	GND	Ground	Ground
6	3.3V	output	3.3V output

- 1. Ensure the touchscreen uses an I2C interface.
- 2. Interface signals (I2C, RST, INT) are 3.3V. For 1.8V touchscreens, use level conversion.
- 3. Connect the touchscreen before powering on. Do not hot-plug.
- MIPI LCD(Triangle marks Pin 1, 31PIN/0.3mm) MIPI Sig

MIPI Signal Output

S/N	Definition	Attribute	Description
1-2	AVCC	Power	3.3V power supply
3	DVCC	Power	1.8V power supply
4	GND	Ground	Ground
5	RESET	Signal Input	Reset pin
6	DVCC	Power	1.8V power supply
7	GND	Ground	Ground
8	DSI-D3N	Output	MIPI DATA
9	DSI-D3P	Signal Input	MIPI DATA
10	GND	Ground	Ground
11	DSI-D0N	Output	MIPI DATA
12	DSI-D0P	Signal Input	MIPI DATA
13	GND	Ground	Ground
14	DSI-CLKN	Output	MIPI CLK

15	DSI-CLKP	Signal Input	MIPI CLK
16	GND	Ground	Ground
17	DSI-D1N	Output	MIPI DATA
18	DSI-D1P	Signal Input	MIPI DATA
19	GND	Ground	Ground
20	DSI-D2N	Output	MIPI DATA
21	DSI-D2P	Signal Input	MIPI DATA
22-23	GND	Ground	Ground
24~27	LED-	Power	Backlight power negative
28	NC	NC	NC
29~31	LED+	Power	Backlight power positive

1. Ensure the screen's voltage/current parameters match the mainboard's (default backlight current: 42mA). If the current parameters of the selected screen do not meet the requirements, you can seek support from our company's FAE.

- 2. Ensure the screen's pinout matches the mainboard's. Use the correct FPC cable.
- 3. Interface signals (e.g., RST) are 1.8V. For 3.3V modules, use level conversion.

• TAIL LINE Interface (Triangle marks Pin 1, 20PIN/2.0)

S/N	Definition	Attribute	Description	
1	12V	Power	+12Vpower input	
2	NC	Control Line	Relay normally closed	
3	UART4TX	Control Line	TTL TX, configurable as RS485 A	
4	СОМ	Control Line	Relay common terminal	
5	NO	Control Line	Relay normally open	
6	WGOD0	Data Line	Wiegand output D0	
7	WGOD1	Data Line	Wiegand output D1	
8	UART4 RX	Signal Input	TTL RX, configurable as RS485 B	
9	DOOR	Data Line	Input interface for door open button connection	

10	ALARM	Data Line	Input for door sensor
11	GND	Ground	Ground
12	POL	Data Line	Forced Update Input
13	GND	Ground	Ground
14	USB_OTG_ DP	I/O	D+ signal line
15	USB_OTG_ DM	I/O	D- signal line
16	USB 5V	Power Output	+5V Power Output
17	TX-	Ethernet Line	Ethernet TX-
18	TX+	Ethernet Line	Ethernet TX+
19	RX-	Ethernet Line	Ethernet RX-
20	RX+	Ethernet Line	Ethernet RX+

1. Use a power supply or adapter compliant with 3C standards, with 30%-50% margin (e.g., 2.5A-3A for 1.5A total current).

2. Several differential signal pairs on the tail cable must use twisted pairs to prevent data loss, including: Ethernet signals (TX-/TX+, RX-/RX+), USB signals (DM/DP), and non-differential serial signals (UART4TX/UART4RX).

3. Ensure the tail cable's pinout matches the mainboard's to avoid malfunctions or damage.

4. The USB 5V output supports a maximum current of 1A. (Hot-plugging is not supported when connecting to peripherals that also provide 5V output).

MIPI CSIX2 (Triangle marks Pin 1, 40PIN/0.5mm) Dual MIPI Camera Interface (Dual/single camera option)

S/N	Definition	Attribute	Description			
1	VDD2V8	Power	2.8V Output			
2	VDD3V3	Power	3.3V Output			
3	IR-PWDN	Output	IR_Camera power-down control			
4	IR-RST	Output	IR_Camera reset signal			
5	SCL	Output	SCL signal			
6	SDA	I/O	SDA signal			
7	GND	Ground	Ground			
8	IR-XCLK	Output	IR_Camera master clock			

9	GND	Ground	Ground			
10	MIPI-CSI1-MCP	I/O	Camera MIPI clock channel +			
11	MIPI-CSI1-MCN	I/O	Camera MIPI clock channel -			
12	GND	Ground	Ground			
13	MIPI-CSI1-D0P	I/O	Camera MIPI data channel 0 +			
14	MIPI-CSI1-D0N	I/O	Camera MIPI data channel 0 -			
15	GND	Ground	Ground			
16	NC	/	NC			
17	NC	/	NC			
18	GND	Ground	Ground			
19	DOVDD1V8	Power	1.8V output			
20	NC	/	NC			
21	NC	/	NC			
22	IR-DVDD1V2	Power	1.2V output			
23	RGB-DVDD1V2	Power	1.2V output			
24	RGB-PWDN	Output	RGB_Camera power-down control			
25	RGB-RST	Output	RGB_Camera reset signal			
26	GND	Ground	Ground			
27	RGB-XCLK	Output	RGB_Camera master clock			
28	GND	Ground	Ground			
29	MIPI-CSI0-MCP	I/O	Camera MIPI clock channel +			
30	MIPI-CSI0-MCN	I/O	Camera MIPI clock channel -			
31	GND	Ground	Ground			
32	MIPI-CSI0-D0P	I/O	Camera MIPI data channel 0 +			
33	MIPI-CSI0-D0N	I/O	Camera MIPI data channel 0 -			
34	GND	Ground	Ground			
35	NC	/	NC			
36	NC	/	NC			
37	GND	Ground	Ground			
38	5V	Power	Power			
39	5V	Power	Power			
40	5V	Power	Power			

1. Pay special attention to the pin-1 alignment between the motherboard and camera. Verify whether the FPC cable requires same-side or reverse-side insertion to ensure correct pinout matching. Incorrect connection may damage both motherboard and camera.

Electrical Performance

Item	Min	Typical	Max	
	Voltage		12V	
Power Parameters	Ripple			50mV
	Current	2A		
Power Current (No Peripherals)	Operating		90mA	130mA
	Standby		10mA	30mA
Power Current (with MIPI)	Operating		200mA	1000mA
Total Output	Current			2A
	Humidity			80%
Environment	Operating Temp	0°C		60℃
	Storage Temp	−20°C		70°C

Note: Current consumption for MIPI screens depends on the screen model and is not listed above.

5 Minimum Test Items

Description:

	Minimum Stability and Reliability Tests				
No.	Test Item	Test Details			
1	Basic Function Test	Perform full system functional testing including: Wi-Fi, Bluetooth, Ethernet, USB, serial communication, and video playback capabilities.			
2	Software Upgrade Test	Verify firmware upgrade functionality through all supported methods: wired flashing, USB drive update, and OTA network upgrade.			
3	High-Temperature Aging Test	high-temperature resistance: Operate at 60° C for 3 days without crashes, display issues, or black screens.			
4	Low-Temperature Power-Off Test	low-temperature resistance: Operate at $0^\circ\!\!\mathbb{C}$ for 3 days without crashes, display issues, or black screens.			
5	ESD Test	Simulate electrostatic discharge resistance per IEC 61000-4-2: ±4KV contact, ±8KV air. Must meet Class A/B.			
6	Sweep Vibration Test	Test the product's vibration resistance involves simulating transportation conditions and assessing the solder joints and component durability to prevent potential issues. Using a vibration tester, the product is tested, and if the structure shows no loosening or detachment after testing, operates normally without malfunctions, screen abnormalities, black screens, or other electrical or structural defects, it is deemed OK.			
7	Free-Fall Test	Simulate the transportation and handling of the product to assess its drop resistance, determining the structural durability of the device to prevent potential issues. This serves as a reference for design and process improvements. After testing, if the sample functions normally without electrical failures (such as freezing, screen abnormalities, black screens) or structural/external damage, it is deemed OK.			

8	Short-duration power loss test (room temperature)	This test verifies the product's capability to endure repeated power on/off cycles.
---	---	---

6 Configurable Parameters (Variants)

类型	标准		中配		高配	
ODT NAND DI AGU	64MB		256MB		512MB	
SPI_NAND_FLASH	128MB		512MB		1G	V
	8G		16G		16G	
EMMC	32G		32G		32G	
	64G		64G		64G	
WIFI+BT	2.4G		2.4G+BT	V	2.4G+BT	
WIF1 'D1	5G+BT		5G+BT		5G+BT	
ETH/RJ45	I	$\overline{\mathbf{v}}$				
MIPI CSI*2		√			[]
MIPI DSI	MIPI DSI 🗹					
USB*OTG	USB*OTG 🗹					
TTL*3	Ø					
RS485*1						

Usage Notes

During assembly and usage, please pay attention to the following (but not limited to) potential issues.

- Do not install or connect peripherals while the board is powered. Use anti-static tools (e.g., wrist straps).
- When connecting peripherals via cables, ensure pin definitions match the motherboard sockets to prevent short circuits due to incorrect wiring.
- When fixing the board with screws, distribute force evenly to avoid PCB deformation and potential open circuits.
- For interfaces with selectable voltages (e.g., LVDS, eDP), ensure the voltage matches the screen's specifications.
- For peripherals (USB, UART, IO, etc.), ensure level and current output compatibility.
- For serial ports, ensure level matching and correct TX/RX/485-A/485-B connections.
- Select a power supply that meets the total peripheral power requirements (voltage, current).
- Consider board height limits and heat dissipation in the overall product design.

8 Dimensions

8.1 Board Dimensions

PCB length 95.4mm, width: 60.9mm, hole diameter: 3.5mm, overall board height is approximately 10mm. For detailed drawings, contact sales for DXF files.

